
Clusterless decoding of mouse choices based on Point-wise Neural Network

Bole (James) Pan1

Supervised by: Liam Paninski 2, Yizi Zhang 2

Abstract

Neural decoding is an important task in systems neuroscience for correlating brain activity and
behavior. Traditional decoding methods, which require spike-sorting, can prove computationally
expensive with the ever-increasing dataset size. Recent advances in clusterless decoding have
achieved convincing results but may lack in capturing nonlinear features in the datasets. Here we
introduce a new method for clusterless decoding by modifying deep learning networks PointNet
and PointNet++. By treating spikes sequences as point clouds, we proposed a
permutation-invariant network that also takes into account the temporal feature through the
method of time-binning. The method is able to achieve performances on par with the
state-of-the-art decoding methods, opening up possibilities and providing insights for further
research in neural-network-based clusterless decoding.

1. Introduction

Neural decoding refers to the extraction of semantically meaningful information from brain
activity data. It is central to understanding the relationship between neural activities and
behaviors in the outside world (1, 2). Most neural decoding techniques require input data,
typically electrophysiological recording, to go through “spike-sorting” – a process in which each
neuronal spike is assigned to a particular neuron based on waveform features.

Despite recent research developments in spike-sorting that have led to increased performances in
neural decoding (3-5), researchers are still actively looking for ways of perfecting the process.
Often in spike-sorting, spikes that are too small or too difficult to assign to a specific neuron are
discarded, resulting in a net loss of information (6). Moreover, as the capability of neural
recording increases exponentially, performing spike-sorting on every new dataset can prove
computationally expensive (7). These issues have led to efforts in exploring methods in the
family of “clusterless decoding”: can we improve decoding by retaining uncertainty about spike
assignment?

Previous research in this direction has proved the feasibility of the clusterless approach. The
results from Trautmann et al. (7) showed that multichannel thresholding, the method of assigning
each spike to a channel instead of a particular neuron, achieved similar performances with
spike-sorting. Zhang et al. proposed a density-based neural decoding approach for Neuralpixels

2 Department of Statistics and Neuroscience, Center for Theoretical Neuroscience, Grossman Center for the Statistics of Mind,
Zuckerman Institute, Columbia University; New York, NY, 10027

1 Columbia College, Columbia University; New York, NY, 10027

STAT GR8201 Final Project

recordings that models the distribution of spike features as a mixture of Gaussians. Each spike is
assigned to a particular Gaussian distribution with a probability density, thus retaining
uncertainty about spike assignment. This was shown to achieve superior performances compared
to decoding on spike-sorted data (6). These works all provide the theoretical justification for
continued research on decoding behaviors from unsorted Neuralpixels data.

Advanced in neural data processing pipeline has allowed the extraction of an ever-increasing
richer set of spike features from multi-channel probes recording. In addition to spike time and
waveform features, extractable spike features now also include spike location (x, y, z), provided
by 2D and 3D spike localization techniques developed from recent research (8, 9). Hence,
Neuralpixels recording data can be now processed into the form of spike trains with each spike
carrying multiple features, showing a resemblance to point-cloud data.

Figure 1. Spike features (x, z, max_ptp) of one trial plotted on a graph. The horizontal axis is the z
coordinate of the spike (unit in micrometers), the vertical axis is the x coordinate of the spike (unit in
micrometers), and the color indicates the maximum peak-to-peak amplitude of the spike (the lighter the
color, the larger the amplitude, the stronger the spike). Data presented in this way makes it easy to
understand the motivation behind adopting neural networks for point cloud processing on the dataset.
Figure from Zhang et al. (2022) (6).

Herein, we explore the application of established supervised learning frameworks for point-cloud
processing on spike train data. An underlying hypothesis is that, given labels, a supervised
learning neural network is the most suitable paradigm for generating a low-dimensional
embedding of electrophysiology recording data that correlates with behaviors, capturing
non-linearities in the process. Building upon previous work, we make the following key
contributions in this paper:

1. We examine the effects of directly applying established deep learning networks for point
clouds, PointNet and PointNet++, on neural data

2. We modify the current PointNet architecture to propose a permutation-invariant network
that takes into account the temporal feature and demonstrates its utility in decoding
mouse choices

3. We propose a hierarchical way of applying this architecture to capture spatial local
structures in addition to temporal features

2

STAT GR8201 Final Project

2. Methods

2.1 PointNet

Point-cloud object classification has been an active area of computer vision, owing to its
applications in particularly self-driving (10). PointNet, proposed by Qi et al. in 2016, is the first
unified architecture for directly consuming point-cloud data for deep learning (11). PointNet
takes into account two key features of the point set: permutation-invariance and
transformation-invariance. This means that changing the order of inputting the points and
rotating the points clouds should both not affect the result of classification. To make sure the
network is permutation invariant, PointNet uses a symmetric function, a max pooling layer. A
symmetric function of n variables has the following property:

𝑓 𝑥
1
, 𝑥

2
, … , 𝑥

𝑛() = 𝑓 𝑥
2
, 𝑥

1
, … , 𝑥

𝑛() = 𝑓 𝑥
3
, 𝑥

1
, … , 𝑥

𝑛
, 𝑥

𝑛−1(), 𝑒𝑡𝑐.

And the symmetry function is represented as following:

𝑓 𝑥
1
, 𝑥

2
, … , 𝑥

𝑛() ≈ 𝑔 ℎ(𝑥
1
), ℎ(𝑥

2
), … , ℎ(𝑥

𝑛
)()

PointNet approximates h by a multi-layer perceptron (MLP) network and g by a max pooling
function. By processing each point using the MLP, the network increases the number of features
for each spike, effectively reducing potential information loss in the subsequent max pooling
step. During experiments, we explore how different choices of function g (like SUM, AVG)
affect decoding performances and discuss the possible reasons for variation.

The part of PointNet making the network transformation invariant is not implemented in this
project due to the fact that Neuralpixel recording data doesn’t exhibit such a property.

2.2 PointNet with Time-binning

PointNet is originally developed for object classification and segmentation on static point clouds,
not taking into account the dimension of time. In Neuralpixel recording, spike times are of great
significance, as different neurons firing in different orders could suggest completely different
outward behaviors of a subject. To address this, we modify the architecture on top of PointNet
Vanilla (Figure 2): after the MLP operation, instead of using one symmetric function to generate
one global feature from all spikes of (1*embedding_dimension), we first split the entire interval
of one trial (t seconds in duration) into k time bins, each t/k seconds long. The k time bins,
therefore, would be (0, t/k], (t/k, 2t/k], …, ((k-1)t/k, t]. Each spike would be assigned to a time
bin based on its own spike time, and then the symmetric function would be performed on all
spikes from each time bin.

3

STAT GR8201 Final Project

Figure 2. Architectures of PointNet Vanilla and Modified PointNet with Time-binning. MLP stands
for multi-layer perceptron, and the numbers are the size of each layer. PointNet Vanilla takes N spikes
(dimension is 1*f, where f is the number of features) as inputs, applies multi-layer perceptron to transform
each input point into a higher dimensional vector, and applies the symmetric function of max pooling.
Modified PointNet with Time-binning takes N spikes, applies the same transformation, assigns each spike
to a time bin, and applies the symmetric function of summing on each time bin. A second multi-layer
perceptron network serves as a decoder to process the global features generated. The outputs are
classification scores for k classes in both architectures. Batch normalization is applied for all layers, and
activation functions are ReLU for all layers.

2.3 PointNet++

One major issue of PointNet is that local spatial structures are not captured. Building upon their
original work, Qi et al. introduced PointNet++, a hierarchical neural network that uses the
method of applying PointNet recursively on a nested partitioning of the input point set (12). By
gradually capturing features on different scales, the network is proved to be able to capture
spatial local structures of the data. Figure 3 shows the pipeline for applying PointNet++ directly
on Neuralpixel recording data. PointNet++, though capturing spatial local structures, still fails to
provide resolution on the scale of time. Here we design an architecture combining time-binning
and hierarchical featuring, as shown in Figure 4.

4

STAT GR8201 Final Project

Figure 3. Illustration of hierarchical feature learning architecture and its application on neural data.
The network takes N spikes as inputs (each spike’s dimension is 1*f, where f is the number of features).
The inputs go through two Set Abstraction layers, which include the following: a sampling layer first
selects K centroids using the furthest point sampling method; a grouping layer makes K groups, which
each include one centroid and M points that are closest to this centroid; and a PointNet layer: for each of
these groups, a PointNet is applied to each of them to obtain K local features, each raised to (1+D’)
dimensions. A final PointNet applies the symmetric function to aggregate all local features obtained from
the two set abstractions to get one global feature (1*embedding_dimension), which is then decoded
through a multi-layer perceptron network to produce the output of classification score.

Figure 4. Illustration of time-binning + hierarchical feature learning architecture. Inputs are the same
as before: n spikes, each spike’s dimension being 1*f, where f is the number of features. Before any
processing, each spike is assigned to one of the t time bins based on its spike time, and every time bin is
padded to the same length to ensure they all contain the same number of spikes. Each time bin, which can
be considered as the representation of the subject’s brain state during a short time interval, undergoes
PointNet++ processing separately to generate a global feature of that period. This global feature is already
capturing the local spatial features. Concatenating t global features from the t time bins, we obtain a
global feature matrix (t * embedding_dimension) which we can decode using the multi-layer perceptron
network to obtain classification scores.

5

STAT GR8201 Final Project

3. Results

3.1 Experimental data

Electrophysiological and behavior data from subject mouse DY-016 is used for testing the
established and the newly-proposed point cloud processing architectures. One session selected
from DY-016 included 286 trials, with each trial’s duration being 1.5 seconds. During one trial, a
visual stimulus is presented to the mouse, and the mouse has to make a choice between left or
right. A Neuralpixel recording probe recorded the mouse’s electrophysiology data during the
entire session. All datasets used in this paper are publicly available on the International Brain
Laboratory (IBL) website.

Figure 5. (Left) The setup of the experiment during which data is collected. (Right) The distribution
of mouse choices of left and right over the entire session. Figure from Zhang et al. (6).

3.2 Comparison of performances of different point cloud processing architectures

Decoding performance was evaluated using the unsorted spike train data from the mouse choice
task, and results are shown in Figure. Serving as benchmarks for comparison are (1) linear
decoding based on Kilosorted data and (2) the clusterless multi-channel thresholding approach
using unsorted data. From the graph, it is evident that directly applying PointNet and PointNet++
to neural data resulted in poor performance. Modified PointNet with Time-binning, however,
achieved satisfactory performances, coming close to the accuracy and AUC of the benchmarks.
This is convincingly showing that, unlike static point clouds from LiDAR scans, time is a crucial
dimension in neuronal spike point cloud datasets. Any attempt of decoding behaviors from
electrophysiology recording must find a way of efficiently encoding time when generating the
feature embedding.

We can also compare two ways of accounting for the dimension of time: directly inputting it
(making spike time a feature of each spike), or using time bins (assigning each spike to a time
bin and extracting global features from each). While the two approaches achieve similar
accuracy scores, the AUC of the time bin approach is significantly higher than the former. Time
binning is effectively reducing the temporal resolution. This could mean that too high of a
temporal resolution is bringing too much noise into the data – what helps to decode
performances might not be the information of which neuron fired at exactly what time, but the
patterns of neuron activities in the mouse brain as a whole during different time segments.

6

STAT GR8201 Final Project

It’s also worthwhile to examine the training curves. During experiments, when directly applying
PointNet to neural data, while the training AUC curve reached around 0.95 after 40 epochs, the
validation AUC curve didn’t show signs of increasing – this is a sign of overfitting, originating
often from not enough training data or that training data doesn’t accurately represent all possible
input recording data. One possible explanation of this is, while the classification network of
PointNet is trained on 12,311 CAD models (each was downsampled to containing 1024 points),
our network is only trained on 286 trials from a single session, each trial containing from 2134 –
3578 spikes. This could also be an explanation for the observation that PointNet and PointNet++
didn’t show significant differences in performance. If both models are overfitting to training
data, it would be difficult to tell which would actually fit the data better in the event of feeding
the models enough training data.

Figure 6. Comparison of decoding performance on mouse choices using different architectures. Error
bars indicate the minimum, maximum, mean, and standard deviation of accuracy and AUC from 5-fold
cross-validation.

7

STAT GR8201 Final Project

Figure 7. Loss and AUC curve for training and validation when directly applying PointNet Vanilla
on Neuralpixel recording data. The x-axis is the number of epochs; the y-axis is the Cross-entropy loss
(left) and the AUC score (right) of each epoch.

3.3 Comparison of performance of Modified PointNet under different parameters

Knowing that Modified PointNet with Time-binning yields the best decoding performances, we
examined whether using different parameters for the method would alter the results. We first
explored changing the set of features inputted into the model. Interestingly, no matter whether
the set of features is (x, z, ptp), (x, y, z), (x, y, z, ptp), etc., there appear to be no significant
differences in the decoding performances (ptp is the maximum peak-to-peak amplitude of the
spike waveform). Accuracy is around 0.83 and AUC is around 0.91. With features x, y, and ptp
removed individually, the model all produced similar performances. The removal of feature z,
however, seems to impact performance the most, indicating the z coordinate of the spike to be
the main feature the model relies on for classification. It remains to be investigated as to why
adding an additional feature and switching the x and y coordinate features to the waveform
feature have little impact on performance. This could hint at flaws in model design, that the
model not fully utilizing all available features given.

Changing the symmetric function from max pooling, as originally proposed in the PointNet
paper, to summing, does result in a significant increase in performance. A possible explanation is
that, when the symmetric function is applied to reduce dimension in the step of time binning,
more information is preserved under the summation function than the max pooling function. If
more neurons that are close together actively fired in a time bin compared to another time bin,
summation can more accurately reflect that; max pooling, instead, could just simply focus on the
spike with the strongest firing pattern in a time bin and ignores the population information.

8

STAT GR8201 Final Project

Figure 8. Comparison of decoding performance on mouse choices of the Modified PointNet with
different features and symmetric functions. As above, error bars indicate the minimum, maximum,
mean, and standard deviation of accuracy and AUC from 5-fold cross-validation.

3.4 Future Work

This work covers the preliminary findings in experimenting with the application of point cloud
processing deep learning architectures on Neuralpixel data. Aside from trying to gain insights
into the experimental results from the above, a key direction for further research is finding a way
of extracting local features from the dataset. Initial attempts of directly applying the PointNet++
paradigm have shown poor performances. This raises doubt about whether extracting spatial
local features through sampling and grouping is indeed a valid approach. Could the local
structures that were captured just be noise around a centroid? As suggested by Dr. Cole Hurwitz,
we plan to first test the feasibility of hierarchical feature extraction using clusters approximated
by a Gaussian Mixture Model (GMM) (6). The first step of the plan is to perform hard
assignments for each spike with the probability scores obtained by the GMM, take the centroid
of each cluster, and train a linear classifier on the centroids that are weighted by their relative
density. Further work from other angles on repurposing point cloud processing architecture for
neural data would also be made, with the focus on figuring out how to best incorporate time
information and coping with a smaller training set size.

9

STAT GR8201 Final Project

4. Conclusion

In summary, we examined the feasibility of using point-wise neural networks for clusterless
decoding of mouse choices. We directly applied established deep learning networks for point
clouds, PointNet and PointNet++, on neural data. We modified the current PointNet architecture
to propose a permutation-invariant network that takes into account the temporal feature. Results
demonstrate the importance of accounting for the temporal feature in the decoding model, while
also suggesting too high of a temporal resolution could adversely impact decoding performances.
Modified PointNet with Time-binning helped achieve accuracy on par with the state-of-the-art
decoding methods, proving the concept of treating such data as point clouds. This opens the door
for a computationally-inexpensive approach to decoding that could capture nonlinearity in
Neuralpixel recording data. Future works would center on identifying the best approach for
capturing spatial local structures to further increase clusterless decoding performances.

Acknowledgments

The author thanks the supervision and guidance of Yizi Zhang and Prof. Liam Paninski. The
author thanks Dr. Cole Hurwitz for providing support and advice on the project. The author also
appreciates the presentation feedbacks from fellow classmates of STAT8201.

References

1. M. A. van Gerven, K. Seeliger, U. Güçlü, Y. Güçlütürk, Current advances in neural
decoding. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning,
379-394 (2019).

2. J. I. Glaser et al., Machine learning for neural decoding. Eneuro 7 (2020).
3. M. Pachitariu, N. Steinmetz, S. Kadir, M. Carandini, Kilosort: realtime spike-sorting for

extracellular electrophysiology with hundreds of channels. BioRxiv, 061481 (2016).
4. J. H. Lee et al., YASS: yet another spike sorter. Advances in neural information

processing systems 30 (2017).
5. A. P. Buccino et al., SpikeInterface, a unified framework for spike sorting. Elife 9,

e61834 (2020).
6. Y. Zhang et al., Density-based Neural Decoding using Spike Localization for Neuropixels

Recordings. Not Published (2022).
7. E. M. Trautmann et al., Accurate estimation of neural population dynamics without spike

sorting. Neuron 103, 292-308. e294 (2019).
8. J. Boussard, E. Varol, H. D. Lee, N. Dethe, L. Paninski, Three-dimensional spike

localization and improved motion correction for Neuropixels recordings. Advances in
Neural Information Processing Systems 34, 22095-22105 (2021).

10

STAT GR8201 Final Project

9. C. Hurwitz, K. Xu, A. Srivastava, A. Buccino, M. Hennig, Scalable spike source
localization in extracellular recordings using amortized variational inference. Advances in
Neural Information Processing Systems 32 (2019).

10. D. Fernandes et al., Point-cloud based 3D object detection and classification methods for
self-driving applications: A survey and taxonomy. Information Fusion 68, 161-191
(2021).

11. C. R. Qi, H. Su, K. Mo, L. J. Guibas (2017) Pointnet: Deep learning on point sets for 3d
classification and segmentation. in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 652-660.

12. C. R. Qi, L. Yi, H. Su, L. J. Guibas, Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems 30
(2017).

11

