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A B S T R A C T

BiOI/Bi4O5I2 composites were synthesized by calcinations with BiOI microspheres at 400 °C. The BiOI/Bi4O5I2
composites demonstrate 5 times higher photocatalytic activity than the pristine BiOI for methyl orange (MO)
degradation under the irradiation of visible light. Moreover, the BiOI/Bi4O5I2 composites have superior cycling
stability. Such enhanced photoactivity is due to the significantly enhanced separation efficiency of photo-
generated.

Photocatalysis has been used to remove the organic contaminants in
wastewater [1–3]. Among the visible light active Bi-based photo-
catalysts, BiOI has the smallest band gap (1.6–1.9 eV) and unique
structure (layered crystal structure consisting of [Bi2O2]2+ layers
sandwiched between two slabs of halogen ions) [4]. This structure can

effectively generate more photocatalytic electrons and holes, which is
benefited to the photocatalytic performances for degradation of the RhB
and methyl orange (MO). However, low efficiency of photogenerated
charge carriers limits its practical application [5,6].

Heterojunction, doping, and defect construction have been
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performed to improve the photocatalytic performance of BiOI [7–9].
Formation of heterojunctions could significantly enhance the separa-
tion of photogenerated charge carriers and the composites are photo-
catalytically more active than the individual components [10], such as
Pd/BiOI/MnOx [11], Bi2S3/Bi2O3/Bi2O2CO3 [12], BiOI@Bi12O17Cl2
[13]. However, using one photocatalyst as a substrate and loading an-
other photocatalyst onto the surface of the former will make the solid-
solid contact interface unstable. This shortcoming leads to the diffi-
culties of photoelectrons transport between two catalysts. Therefore, it
is urgent to find a simple method to consolidate the interface inside the
catalysts.

Calcination is extensively applied for constructing two phase con-
tact interface. This will consolidate the interface, improving the pho-
tocatalytic performance [14,15]. For example, Cai et al. calcined
Bi2O2CO3 to form Bi2O2CO3/Bi2O3 p-n heterojunction and they found
that Bi2O3/Bi2O2CO3 photocatalyst displayed much higher photo-
catalytic performance for the degradation of methylene blue than pure
Bi2O2CO3 and Bi2O3 under visible light [14]. These features inspired us
to improve the photoactivity of BiOI by calcining BiOI to form BiOI/
Bi4O5I2 composites. The BiOI/Bi4O5I2 composites demonstrate 5 times
higher photocatalytic activity than the pristine BiOI for MO degradation
under the irradiation of visible light. Moreover, the BiOI/Bi4O5I2
composites have superior cycling stability. Such enhanced photo-
activity is due to the significantly enhanced separation efficiency of
photogenerated.

The BiOI/Bi4O5I2 composites were obtained by annealing the pris-
tine BiOI at 400 °C in air, which is according to the TG result (Fig. S1).
As displayed in Fig. 1, BiOI and BiOI/Bi4O5I2 composites consist of
many microspheres self- assembled by nanosheets. SEM results reveal
that morphology of microsphere has no change after thermal treatment.
The detailed structure information of BiOI/Bi4O5I2 composites is fur-
ther studied by transmission electron microscopy (TEM). The images
demonstrate that BiOI/Bi4O5I2 composites appearance with micro-
sphere-like (1.5 μm) and the microsphere composed of nanosheets.
High-resolution TEM image of BiOI/Bi4O5I2 displays that some inter-
planar distance of 0.30 nm and 0.317 nm appearance, which are cor-
responding to (102) plane of BiOI and (111) plane of Bi4O5I2, respec-
tively [16]. This result suggests that BiOI/Bi4O5I2 composite is obtained
after annealing BiOI at 400 °C in air.

The crystal structures of BiOI and BiOI/Bi4O5I2 are analyzed by X-

ray diffraction (XRD), which is displayed in Fig. 2a. The peaks of BiOI
could be assigned to tetragonal BiOI (PCPDF no.: 10-0445) [17]. While
some other peaks appear in the BiOI/Bi4O5I2 spectra and could be de-
signated to Bi4O5I2 accordingly to the previously reported data [18].
Furthermore, Raman spectra are also carried out to identify the struc-
ture of BiOI/Bi4O5I2 composites (Fig. 2b). The peaks at 85 cm−1 and
147 cm−1 are attributed to the BieI vibration of BiOI [19]. And the
peaks at 300–600 cm−1 are due to the change of BieO environment.
Therefore, the above results also confirm the successful formation of
BiOI/Bi4O5I2 composites. The electrochemical impedance spectra are
performed to study the interface charge separation efficiency under the
visible light irradiation and dark (Fig. 2c). The arc radius is smaller,
meaning the efficiency of charge transfer is higher [20,21]. Thus, BiOI/
Bi4O5I2 has the highest charge transfer efficiency among the samples
under the visible light irradiation. The fast charge transfer rate of BiOI/
Bi4O5I2 composites are attributed to the heterojunction, promoting the
separation of electrons and holes. Furthermore, as displayed in Fig. S2,
The absorption band gap of BiOI/Bi4O5I2 shows blue shift compared to
the pristine BiOI, revealing that BiOI could utilize more solar light.
Undoubtedly, the enhanced photocatalytic activity of BiOI/Bi4O5I2
sample cannot be due to the absorbing abilities.

The photocatalytic activity of BiOI and BiOI/Bi4O5I2 are evaluated
by degradation of MO with irradiation of visible light (λ > 420 nm).
Fig. 3a shows the photocatalytic performance of degradation of MO
over BiOI and BiOI/Bi4O5I2. The absorption abilities of MO on BiOI and
BiOI/Bi4O5I2 in darkness are performed before the light on. BiOI sample
and TiO2 show weak photocatalytic performances, and only 40% and
12.2% of MO are degraded within 2 h, respectively. Comparatively,
BiOI/Bi4O5I2 presents a high photocatalytic activity with a degradation
efficiency of 99%. Furthermore, the pseudo-first-order kinetics of BiOI
and BiOI/Bi4O5I2 are revealed according to Fig. 3a. The apparent rate
constant of BiOI/Bi4O5I2 (0.044min−1) is 11 times higher than that of
BiOI (0.004min−1), revealing the excellent photocatalytic activity of
BiOI/Bi4O5I2 sample. Notably, after 6 successive cycles, the photo-
catalytic performance only slightly decreased under visible light, con-
firming the high stability of BiOI/Bi4O5I2 (Fig. 3c). Furthermore, the
BiOI/Bi4O5I2 could also remove other dye pollutants such as RhB,
methyl blue (MB), acid orange (AO), phenol and Congo red (CR), which
could remove>95% of these dyes after 120min (Fig. 3d). All the
above results demonstrate that BiOI/Bi4O5I2 is a good photocatalyst

Fig. 1. SEM images of (a) BiOI and (b) BiOI/Bi4O5I2. TEM images of BiOI/Bi4O5I2 (c, d and e).
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and heterojunction could promote the separation of electrons and holes.
In summary, we prepared BiOI/Bi4O5I2 by annealing pristine BiOI at

400 °C in air. The BiOI/Bi4O5I2 composites demonstrate 5 times higher
photocatalytic activity than the pristine BiOI for MO degradation under
the irradiation of visible light. Moreover, the BiOI/Bi4O5I2 composites
have superior cycling stability. Such enhanced photoactivity is due to
the significantly enhanced separation efficiency of photogenerated.
This work not only provides a new insight into heterojunction in pro-
moting photocatalytic activity but also opens up new possibilities for
efficient visible-light driven photocatalysts.
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